Topographical representation of binocular depth in the human visual cortex using fMRI.

نویسندگان

  • Holly Bridge
  • Andrew J Parker
چکیده

We used binocular stimuli to define how the visual location of stereoscopic depth structure maps topographically onto the human visual cortex. The main stimulus consisted of a circular disk of dots, most at zero-disparity, against which a single quadrant was defined with changing disparity ('correlated' disparity), and moved around the visual field. The second stimulus had exactly the same structure, except that the disparity in the quadrant was 'anticorrelated,' that is black dots in one eye were paired with white dots in the other. Unlike the correlated stimulus, this 'anticorrelated' stimulus did not lead to a perception of depth. The activation maps to these disparity stimuli are very similar to those produced using stimuli defined by luminance or motion. The lateral area of the occipital lobe showed the largest difference in response to correlated, as opposed to anticorrelated, disparity. This region included human MT/V5 and two areas, LO-1 and LO-2, recently defined as retinotopically distinct areas within area KO. All these areas, plus V3 and hV4, showed a significantly larger response to the correlated stimulus, compared to the anticorrelated stimulus. No other visual areas showed a significant difference in response. However, the responses to correlated disparity were significantly more reliable than those to anticorrelated in all areas, except V1. Although there are considerable differences in the experimental approach, our fMRI results are broadly consistent with primate neurophysiology showing responses to anticorrelated disparity in V1 neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

Perceptual Integration for Qualitatively Different 3-D Cues in the Human Brain

The visual system's flexibility in estimating depth is remarkable: We readily perceive 3-D structure under diverse conditions from the seemingly random dots of a "magic eye" stereogram to the aesthetically beautiful, but obviously flat, canvasses of the Old Masters. Yet, 3-D perception is often enhanced when different cues specify the same depth. This perceptual process is understood as Bayesia...

متن کامل

Differential processing of binocular and monocular gloss cues in human visual cortex

The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selecti...

متن کامل

7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the ...

متن کامل

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of vision

دوره 7 14  شماره 

صفحات  -

تاریخ انتشار 2007